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ABSTRACT 
 

The main objective of this paper is to use ant optimized neural networks to generate 

artificial earthquake records. In this regard, training accelerograms selected according to 

the site geology of recorder station and Wavelet Packet Transform (WPT) used to 

decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant 

Colony Optimization and resilient Backpropagation algorithm and learn to relate the 

dimension reduced response spectrum of records to their wavelet packet coefficients. 

Trained ANNs are capable to produce wavelet packet coefficients for a specified 

spectrum, so by using inverse WPT artificial accelerograms obtained. By using these tools, 

the learning time of ANNs reduced salient and generated accelerograms had more 

spectrum-compatibility and save their essence as earthquake accelerograms. 
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1. INTRODUCTION 
 

Civil engineers use „response spectrum‟ to evaluate the seismic response of ordinary 
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structures and to design or seismic rehabilitation of structures to withstand earthquake 

forces. However, response spectrum process has limitations to provide temporal information 

on structural response and behavior. Furthermore, major and important structures like dams, 

power plants and high-rise buildings, need an economical and safe design. For satisfying the 

criteria of efficient design, engineers should use new design procedures. Time-history 

analysis, performance based design and controlling of structures are some of these 

procedures that use earthquake accelerograms. However, there are not enough and 

appropriate earthquake records in some parts of the world. So generation of artificial 

earthquake accelerograms that are compatible with a specified spectrum discover an 

important aspect. 

There are many methods for generating spectrum-compatible artificial earthquake 

accelerograms, which categorized as three or four major fields: 

• Stochastic Methods 

• Ray-Theory Methods 

• Hybrid Method 

• New Biologically Soft Computing Methods 

Because the method that proposed in this paper is located in the last categorize, just a 

brief history and major works of this method are demonstrated. New biologically soft 

computing methods introduced at the recent years with the usage of artificial intelligence for 

solving inverse problems. Ghaboussi and Lin [1]used a replicator artificial neural network 

(ANN) for compressing Fourier transform of training accelerograms and then a multi-layer 

feed-forward (MLFF) was trained to relate the pseudo-velocity response spectrum (PSV) of 

training set to compressed Fourier transform. With these two ANNs, they could create only a 

single accelerogram. Then they modified their MLFF by applying Gaussian noise to the 

outputs of each layer, so this ANN was capable of generating multiple spectrum compatible 

accelerograms [2]. Lee and Han used five ANNs for this purpose and made relations 

between seismological parameters and their accelerograms characteristics and response 

spectrums [3]. Rajasekaran et al. introduced a new method based on Lee and Han algorithm 

and the ability of Principal Component Analysis (PCA) in dimension reduction of data [4]. 

Ghodrati Amiri et al. used the abilities of radial basis function (RBF) neural networks and 

discrete wavelet transform (DWT) to produce a single accelerogram [5]. Next, Ghodrati 

Amiri et al. used stochastic neural networks to make a relation between PSV and the 

Wavelet Packet Coefficients (WPC) to generate multiple earthquake accelerograms [6]. 

Recently, Ghodrati et al. by means of a hybrid GA-MLFF network produced an inverse 

mapping from a response spectrum to effective principal components of accelerograms‟ 

WPC [7].  

In this paper, the capability of ANN in solving inverse problems used to generate 

multiple spectrum-compatible earthquake records for specified site geology. In this regard, 

some training accelerograms from Iranian strong motion database selected and categorized 

into Soil and Rock groups according to the site geology of recorder station. ANNs used to 

make relations between pseudo-velocity or acceleration response spectrums (PSV/PSA) and 

WPC of training sets. Because response spectrums calculated at 1000 points, for decreasing 

the number of neurons at input layers of ANNs, we used PCA to select only effective 

coefficients at response spectrums. Furthermore, for overcoming the drawbacks that 

encourage at training phase of ANN (rapid convergence on the local optima and long time of 
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evolving), Ant Colony Optimization algorithm (ACO) combined with resilient 

backpropagation algorithm are used for evolving ANNs. 

 

 

2. ANT COLONY OPTIMIZATION ALGORITHM 
 

The initial ant colony algorithm was proposed by Dorigo in order to find a solution for 

Traveling Salesman Problem (TSP), and was inspired from the real ants‟ [8]. Ants are social 

insects that live in big colonies, and one of the very interesting aspects of the behavior of ant 

species is their ability to find shortest paths between the ants‟ nest and the food sources. In 

this operation, when ants leave their nest to find food, they lay down pheromone trails, 

which other ants then tend to follow it. 

The basic ingredient of ACO is the use of a probabilistic solution construction 

mechanism based on stigmergy. Artificial ants have internal memories, which used for 

storing the path followed by the ants, and deposit and update pheromone trails so other ants 

can follow their path according to these amounts. The original algorithm of the ACO can be 

outlined as algorithm 1. 

 
Algorithm 1: The basic ACO algorithm flow chart [9] 

Parameter Initialization 

Represent the problem by a weighted connect graph 

While termination conditions not met do 

Ant Solution Construct() 

Construct ants‟ solution according to the amount of pheromone trail matrix 

Pheromone Update() 

Compute each ant‟s solution cost and update the pheromone trail matrix 

 

The probability of the kth ant making the transition from node i to node j is given by: 
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where allowedk are the nodes that ants can select them according to given rules and α and β 

respectively control the relative importance of the pheromone trail and visibility. τij(t) is the 

pheromone intensity of the path between node i and j and  ηij is the heuristic information and 

is defined as the quantity 1/dij. 

After each epoch, the pheromone intensity trails updated according to the following 

formula: 
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where ]1,0( is the evaporation rate and k

ji  is the quantity of pheromone released on 

path (i, j) by the kth ant between time t and t + n, and is calculated by: 
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where Q is a constant and Lk is the tour length of the kth ant[10]. 

ACO successfully applied to many numerous combinatorial optimization problems such 

as TSP, quadratic assignment problems, scheduling problems, and vehicle routing problems 

[11]. 

 

 

3. ARTIFICIAL NEURAL NETWORKS 
 

Artificial neural networks are a portion of “Expert Systems” or “Computational Intelligence 

Systems” that inspired from the architecture and internal features of the human brain and 

nervous system. ANNs are consisting of a large number of simple processing elements 

called as neurons. Their power comes from the parallel processing of the data‟s information 

that follows from input layer to output layer via neurons‟ connections. 

The Multi-layer feed forward (MLFF) neural network is the most common neural 

network structure. The relationship between the ith output (yi) and the inputs (x1,x2,...,xp) has 

the following mathematical representation [12,13]: 
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where, h and g are activation functions of hidden and output layers respectively; wij 

(i=0,1,2,…,p, j=1,2,….q) and wj (j=0,1,2,….q) are connection weights of network; p and q 

are the number of nodes at input and hidden layers respectively and w0j and w0ij are biases 

value of output and hidden layers, respectively. 

Back propagation (BP) algorithms are the most popular algorithms that used for training 

ANNs due to their success from both simplicity and applicability viewpoint. In this regard, 

the error between the target and output values passed to each unit in the backward direction, 

and the new modified weight matrix computed in order to minimize the sum-squared error 

function: 
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Modification process contains a series of gradient descent weight updates as follow: 
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where, 
k

mjz  is the input of each neuron that is the weighted sum of the outputs from the 

previous layer; t is the number of training set; L+1 is the number of layers in the network; f 

’(*) is the derivative of the activation function, η is a positive constant, called learning factor 

[14]. 

BP algorithms consist of several training methods such as Quasi-Newton algorithms, 

Levenberg-Marquardt method, Conjugate Gradient algorithms, Resilient Backpropagation 

algorithm, etc. All of these algorithms have their benefits and suitable for specified ANNs 

according to the number of layers, nodes and transfer functions in each layer. Because we 

use squashing functions in our ANNs and the number of weights in the networks is too 

large, we use Resilient Backpropagation algorithm to eliminate harmful effects of squashing 

functions in the magnitudes of the partial derivatives and for faster training. 

 

 

4. WAVELET PACKET TRANSFORM 
 

The first transform that used for analyzing earthquake accelerograms was Fourier 

Transform, which obtained the frequency contents of signals over the analysis window and, 

as such, lacks any time domain localization information. Wavelet Transform (WT) uses long 

time windows to get a finer low-frequency resolution and short time windows to get high-

frequency information of signals. Thus, WT gives precise frequency information at low 

frequencies and precise time information at high frequencies [15]. In Discrete Wavelet 

Transform (DWT), we downsample the original signal into two groups of coefficients: 

Approximations (cA) and Details (cD), which contain low-frequency components and high-

frequency components of signal, respectively. The decomposition process can be iterated, by 

applying this procedure to the cA of the upper level so signal is broken down into many 

lower-resolution components. 

The Wavelet Packet Transform (WPT) is an important extension of the DWT, which 

performs decomposition on both the Approximations and the Details. Therefore, in the WP 

decomposition of a signal, the signal is filtered with both low-pass (LP) and high-pass (HP) 

filters named as quadratic mirror filters. 

Wavelet packets ( )(, tk

mj ) are a collection of basis function )2(2 2 ktj

m

j   . j and k 

are respectively the scaling (frequency localization) parameter and the translation (time 

localization) parameter, and m = 0; 1; ... is the oscillation parameter. The first two wavelet 

packet functions (m = 0,1; j = k = 0) are also called the scaling function )(t  and the 

mother wavelet )(t [16]: 
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Other wavelet packet functions (m = 2, 3, ...) are defined through the following sequence 

of functions [17]: 
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where hl is the low-pass (scaling) filter and gl is the high-pass (wavelet) filter. 

For a discrete signal, the decomposition coefficients of wavelet packets computed by the 

following equations: 
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The original signal reconstructed iteratively by 
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Figure 1 shows a 2-level WPT based on the Conventional (decimated) DWT. 

 

 
Figure 1. A 2-1evel Wavelet Packet Transform decomposition and reconstruction [34]. 

 

 

5. PRINCIPAL COMPONENT ANALYSIS 
 

The main idea of Principal Component Analysis (PCA) is to reduce dimensionality a data 
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set that consist of a large number of interrelated variables, while retaining as much as 

possible of the variation present in the data set. This is achieved by transforing data to a new 

set of variables, the Principal Components (PCs), which are uncorrelated and are ordered so 

that the first few retain most of the variation present in all of the original variables [18]. 

The main results of PCA are scores, which related to the samples and factor loadings 

which reflect how much a variable contributes to that particular PC and how well one 

variable is similar with others. Therefore the higher loading of a variable, the more 

contribution of variable to the variation that accounted for by the particular PC [19, 20]. 

Assume that input data X = [X1 X2 … Xp] be an n × p matrix of n observations on p 

variables and conventionally be columnwise standardized. By using PCA, we postulate that 

X approximated by the following bilinear structure: 

 
TQSX ˆ  (12) 

 

where S = [S1 S2 … Sr] is a n × r matrix of n component scores on r (1 ≤ r ≤ p) components, 

and Q = [Q1 Q2 … Qr] is a p × r matrix consisting of the eigenvectors of  XTX/n=I and 

QTQ= D. Next, we find model parameters S and Q such that 
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is minimized for the prescribed r components [21]. r components can be selected by 

comparing the total variance of  PCs and a desired effective variance ratio )( var
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6. THE PROPOSED METHOD 
 

The main objective of this paper is to develop a methodology base on ACO-Rprop for 

training neural networks that are capable of generating multiple accelerograms for specified 

input response spectrum that includes the site geology specifications of a specified site. The 

generated accelerograms should have response spectrums closely approximate to the input 

response spectrum. In addition, the other characteristics of the generated accelerograms, 

such as their duration, should be similar to those of the recorded accelerograms used to train 

the neural networks. This procedure contains three main stages: Data Preparation phase, 

ANN Training and Testing phase, Artificial Earthquake Records Generation stage. 

 

6.1. Data Preparation phase 

The main tool that used for generating accelerograms is ANN that can solve our inverse 

problem. The inputs of ANNs are the response spectrum of accelerogram and the outputs are 

the WPCs at level j of the WPT of the earthquake records. Therefore, for generation of 

multiple spectrum compatible artificial earthquake records, we need a set of historical 
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accelerograms that used for training ANNs. 

Many factors influenced earthquake ground motions, which one of the most important 

factors is local soil conditions. Soil conditions influence ground motion and its attenuation. 

Studies on the influence of site geology on ground motion use the average shear wave 

velocity to identify the soil category. The scrutinizes show that for the same distance, 

magnitude, and fault mechanism, as the soil becomes stiffer (i.e. a higher shear wave 

velocity), the peak ground acceleration becomes smaller. In addition, there is a general 

agreement between various investigators that the soil condition has a pronounced influence 

on velocity and displacement of earthquake, and accelerograms that recorded on soil subsoil 

have larger peak horizontal velocity than those recorded on rock subsoil [22]. 

This factor was not entered in the models of previous related works. In this study, we will 

apply this factor by categorizing the training accelerograms into two groups: Rock & Soil, 

according to the site geology of their recorder stations. Because we use Iranian strong 

motion, we use Iranian seismic design code (Standard No.2800-05 3rd Edition) in this 

classification. Table 1 shows this standard criterion for site geology categorizing: 

 
Table 1: Site Geology according to Iranian seismic design code 

Ground 

Type 
Explanation of materials 

Shear wave 

velocity 

(m/s) 

I 

Un-weathered igneous rocks, hard sedimentary rocks and 

metamorphic rocks (as gneisses and crystalline silicate rocks) 

Very hard conglomerates very compact and very hard sediment 

VS>750 

375<VS<750 

II 

Soft igneous rocks e.g. tuffs, clay stones, shale and semi-weathered 

or altered rocks 

Crushed (but not hardly) hard rocks , foliated metamorphic rocks, 

conglomerate and compact sand and gravel 

375<VS<750 

III 

Weathered rocks, semi-compact sands and gravels, other compact 

sediments 

Compact sandy clay soils, with low ground water level 

175<VS<375 

IV 

Soft sediments, clay soils, weak cemented and un-cemented sands, 

incompact soils with high ground water level 

Any kind of soft soils 

VS<175 

 

According to this table, soil types I & II are Rock )375( SV  and soil types III & IV are 

Soil )375( SV  and grouping training set is accomplished according to the average shear 

wave velocity for the upper 30 meters of the soil layer under the stations that record 

accelerograms. 

The peak ground acceleration (PGA) of all the accelerograms scaled to 1g so we could 

compare their response spectrum. Next, we categorize accelerograms in four duration groups 

10, 20, 30, and 40 seconds, based on their bracketed durations (0.05g as acceleartaion level). 

For better and faster training of ANNs, PGA of all accelerograms in each group shifted to 

make the PGA of each accelerogram aligned at the same time. This operation is performing 

by adding or deleting zeros from the start or end of accelerograms in specified manner so 
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navigates of them not changed. Tables 2 to 8 show the list of earthquake records, used in 

training set of the ANNs, in each soil condition and duration group. 

It should be noted that for the group of 10 sec duration and Soil site geology, researchers 

could not find any suitable records for training ANNs. 

 
Table 2: List of training earthquake records, 10 sec duration, Site geology: Rock [31] 

Earthquake Station Date 
Magnitude 

MS 

Modified PGA 

(cm/sec
2
) 

Duration 

(sec) 

NAGHAN NAGHAN 1977.04.06 6.2 761 9 

 TABAS 1978.09.17 4.8 93.5 8.34 

 SHALAMZAR 1984.06.01 5 337.2 8.4 

 SARI 1990.01.20 5.8 143.1 9.2 

 HOSSEINEH OLYA 1994.07.31 5 180.5 7.6 

 SADABAD 1996.01.24 4.6 32.8 8.4 

 KARIQ 1997.03.02 5 264.3 7.6 

 HAMEDAN 1998.08.24 4.5 27.6 8.3 

 NAHAVAND 1998.08.25 4.5 84 7.9 

 DAM(HINY MINY) 1998.10.04 4.8 359 6 

 CHENAR 1998.10.04 4.8 20.1 9.6 

 KHONJ 1998.11.13 5.1 397.3 9.6 

 AHRAM 1999.09.24 4.7 143.2 9 

 AHRAM 1999.09.25 4.6 38.4 9.74 

 AHRAM 1999.09.25 4.6 15.5 9.84 

 Faryab 2000.03.11 4.3 23.9 9 

 Tange Eram 2001.05.06 4.2 38.2 9 

 Borazjan 2001.05.07 4.2 27.6 8.1 

 Roodbar 2001.08.20 4.1 27.9 6.4 

 Bandar-e-Asaluyeh 2002.02.27 4.2 48.6 6.9 

 Tange Eram 2002.06.23 4 65.9 7.4 

 Sirch 2003.04.16 4.2 75.2 8 

 

Table 3: List of training earthquake records, 20 sec duration, Site geology: Rock [31] 

Earthquake Station Date 
Magnitude 

Modified 

PGA 

(cm/sec
2
) 

Duration 

(sec) 

MS  

 SIRCH 1989.11.20 5.7 65 18.3 

 ZARRAT 1994.06.18 5 111.5 18 

 ZANJIRAN 1994.06.18 5 87.8 18 

ZANJIRAN ZARRAT 1994.06.20 5.9 310.5 20 

ZANJIRAN ZANJIRAN 1994.06.20 5.9 886.8 14.4 

ZANJIRAN SERVESTAN 1994.06.20 5.9 12.6 20 

 HOSSEINEH OLYA 1994.07.31 5.3 163.8 17.8 

SAREIN 
NIR  

(KARSHENASI) 
1997.02.28 6.1 38.7 15.6 

SAREIN KARIQ 1997.02.28 6.1 494.3 15.4 

 NAMIN 1997.03.02 5 24.1 19.8 

 HASHTPAR 1998.07.09 5.5 14 17.9 

 
DAM 

(SATARKHAN) 
1998.07.11 5.5 15.1 17.3 
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 MALAKSHAHI 1998.08.05 4.9 12.1 19 

 KOHNUSH 1998.08.28 4.5 18 19.4 

 MARUN DAM 1999.01.29 4.5 24.3 19.4 

 BABAKALAN 1999.01.29 4.5 14.1 18.8 

 BEHBAHAN 1999.01.29 4.5 12.1 18.1 

 ABAD 1999.09.25 4.6 19.6 18.9 

 DELVAR 1999.09.25 4.6 9.7 18.4 

POL-E-

ABGINEH 
KAZEROON 1999.10.31 4.9 70.7 18.8 

POL-E-

ABGINEH 
ROMGHAN 1999.10.31 4.9 13.8 18.1 

POL-E-

ABGINEH 
BALADEH 1999.10.31 4.9 59.9 18.1 

 GORGAN 1999.11.26 4.6 11 19.6 

 BARDESKAN 2000.03.28 4.8 21.9 20 

 SEPIDAN 2000.06.23 4.5 15.2 18.6 

 

Table 4: List of training earthquake records, 30 sec duration, Site geology: Rock [31] 

Earthquake Station Date 
Magnitude Modified PGA 

(cm/sec
2
) 

Duration
 

(sec) MS 

 MAKU 1976.11.24 7.3 91.5 28 

 SEDEH 1979.01.16 6.8 41.2 28 

 TABAS 1980.01.12 5.8 160.8 28.6 

 FIRUZABAD 1994.06.20 5.9 239 22 

ZANJIRAN MOHARLO 1994.06.20 5.9 22.3 25 

SAREIN NIARAQ 1997.02.28 6.1 23 25.4 

SAREIN NAMIN 1997.02.28 6.1 71.1 29.8 

SAREIN KHK (FARMD) 1997.02.28 6.1 18.9 21.8 

SAREIN KJH(BAHK.) 1997.02.28 6.1 8.3 23 

 NIR 1998.07.09 5.5 18.6 23.2 

 AHAR 1998.07.09 5.5 19.1 25.6 

 NIARAGH 1998.07.09 5.5 32.8 20.5 

 DAMIRCH 1998.07.13 5.5 41 24 

 BAHAR 1998.08.22 4.5 9.8 21.7 

 BORUJARD 1998.08.23 4.5 13 22.2 

 SFANDAN 1998.08.28 4.5 15.4 23 

 SFANDAN 1998.08.29 4.5 15.4 22.6 

 PATAVEH 1998.09.21 4.6 56.3 25.6 

 FEDAGH 1998.11.13 5.1 18.7 24 

KAREBAS SHABANKAREH 1999.05.06 6.3 10.7 23 

KAREBAS ABAD 1999.05.06 6.3 8.1 26.9 

KAREBAS DELVAR 1999.05.06 6.3 10.2 23 

KAREBAS KAVAR 1999.05.06 6.3 10.8 24.3 

KAREBAS MAHARLO 1999.05.06 6.3 13.1 24.3 

KAREBAS ZARRAT 1999.05.06 6.3 10.6 26.9 

 ABAD 1999.09.24 4.7 47.9 26.2 

 DELVAR 1999.09.24 4.7 100.3 24.3 

POL-E-ABGINEH GHAEMIYEH 1999.10.31 4.9 50.9 23.1 

 MARAVEHTAPEH 1999.11.26 4.6 9.9 23 

 RAZ 2000.08.22 5.8 62.5 24.8 
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Table 5: List of training earthquake records, 40 sec duration, Site geology: Rock [31] 

Earthquake Station Date 
Magnitude Modified PGA 

(cm/sec
2
) 

Duration
†
 

(sec) MS 

TABAS DEYHUK 1978.09.16 7.3 296.8 40 

TABAS TABAS 1978.09.16 7.3 817.8 38 

 TORBATHYDARIYEH 1979.11.27 7.3 45.7 39.8 

 BAJESTAN 1979.11.27 7.3 110.9 32.6 

 SEDEH 1979.11.27 7.3 82.2 38 

 KHAF 1979.11.27 7.3 129.2 40 

Manjil-Rudbar AB-BAR 1990.06.20 7.4 557.7 35 

 Shabankareh 1996.01.24 4.5 53.4 32.3 

SAREIN RAZI 1997.02.28 6.1 34.4 32.8 

SAREIN HUR(BAKH.) 1997.02.28 6.1 58.7 37.4 

 PSA 1998.07.09 5.5 41.2 36.7 

KAREBAS KAZEROON 1999.05.06 6.3 28.2 36.8 

KAREBAS CHENARSHAHIJAN 1999.05.06 6.3 36.1 40 

Changureh-Avaj BAHAR 2002.06.22 6.4 32.8 34.5 

Changureh-Avaj NAHAVAND 2002.06.22 6.4 25.8 36.4 

BAM Sirch 2003.12.26 6.7 30 40 

BAM Andoohjerd 2003.12.26 6.7 30.7 32 

 AB-BAR 2004.05.28 6.3 34.8 40 

SILAKHOR Nahavand 2006.03.31 6.4 18 32.8 

SILAKHOR Hamedan5 2006.03.31 6.4 23.8 37.8 

 

Table 6: List of training earthquake records, 20 sec duration, Site geology: Soil [31] 

Earthquake Station Date 

Magnitude Modified 

PGA 

(cm/sec
2
) 

Durati

on
 

(sec) 
MS 

 RUDSAR 1980.12.03 4.7 105.4 18.3 

 RAVAR 1981.07.28 7 65.7 14.4 

 GOLBAF 1989.11.20 5.7 293.73 12.1 

Manjil-Rudbar ROUDSHOR 1990.06.20 7.7 41.2 18 

 MEIMAND 1994.06.18 5.7 401.7 16.6 

SAREIN MIYANEH 1997.02.28 6.1 12 20 

 KHOMARLU 1998.07.09 5.5 16.2 19.42 

 KALEYBAR 1998.07.09 5.5 12 20 

 ASL 1998.07.09 5.5 12.5 17.9 

 EKBATAN DAM 1998.08.21 4.5 10.1 16.66 

 GIUAN 1998.08.21 4.5 24.6 19.34 

SALEHABAD GONBADLI 1998.11.08 5.2 17.2 18.94 

 JOSHAN 1998.11.18 4.9 20 19.72 

 KERMAN 1998.11.18 4.9 24.8 19.42 

 GUYOM 1999.05.06 5.7 11.3 18.86 

 BABAMONIR 1999.05.06 6.3 38.6 20 

POL-E-ABGINEH NURABADMAMASANI 1999.10.31 4.9 14.9 19.86 

 KALALEH 1999.11.19 5.1 11.2 20 

 ALIABAD 1999.11.26 4.6 303.3 13.62 

 KASHMAR 2000.02.02 5.3 17.5 20 

 KASHMAR 2000.03.28 4.9 12.4 19.76 

 BEHSHAHR 2000.08.16 4.5 8.7 20 

 B-TORKAMAN 2000.08.16 4.5 23.03 18.98 

 RAZ 2000.09.19 4.7 23 19.76 

Changureh-Avaj AVAJ 2002.06.22 6.4 495.9 13 

KAHAK Gazoran 2007.06.18 5.4 77.2 19.7 

KAHAK Hassan Abad 2007.06.18 5.4 38.6 19.94 
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KAHAK Shahriyar 2007.06.18 5.4 9.8 19.86 

KAHAK TEHRAN 11 2007.06.18 5.4 11.5 19.72 

KAHAK Qani Abad 2007.06.18 5.4 14.7 18.2 

 
Table 7: List of training earthquake records, 30 sec duration, Site geology: Soil [31] 

Earthquake Station Date 
Magnitude Modified PGA 

(cm/sec
2
) 

Duration
 

(sec) MS 

 GHAEN 1979.11.27 7.3 195.4 29.28 

ZANJIRAN BABANAR 1994.06.20 5.9 28.2 24.24 

SAREIN MESHKINSHAHR 1997.02.28 6.1 25.2 28.1 

SAREIN GERMY (KARSHENASI) 1997.02.28 6.1 43.5 25.7 

 HERIS 1998.07.09 5.5 15.4 29.54 

 BOJNORD 1998.08.04 5.1 29.3 24.26 

 SALEHABAD 1998.08.05 4.9 27.9 22.96 

 BEYRAM 1998.11.13 5.1 10.2 22.9 

 EVAZ 1998.11.13 5.1 27.5 27.1 

 KERMAN 1998.11.18 4.9 19.7 24.18 

 DEHDASHAT 1999.01.29 4.5 45.7 29.32 

 BANDARABAS 1999.03.04 6.4 15.3 26.8 

KAREBAS KAPHTARAK 1999.05.06 6.3 14.6 26.14 

KAREBAS ZARGHAN 1999.05.06 6.3 11.2 21.74 

KAREBAS SHIRAZ 3 1999.05.06 6.3 14.1 26.9 

KAREBAS SHIRAZ 2 1999.05.06 6.3 28.96 29.6 

KAREBAS SHIRAZ (GEO) 1999.05.06 6.3 14.1 27 

SALEHABAD NASRABAD 1999.11.08 5.2 15.7 26.86 

 RAMIYAN 1999.11.19 5.1 24.4 30 

 VOSHMGIR 1999.11.19 5.1 39.6 29.32 

 MOHAMADABAD 1999.11.19 5.1 10.2 23.02 

 AGHGHALA 1999.11.19 5.1 31.7 29.76 

 AGHBAND 1999.11.19 5.1 13.5 27.88 

 OROMIYEH 2000.06.26 5.2 16.9 21.54 

Changureh-Avaj GILVAN 2002.06.22 6.4 17.4 26.82 

Changureh-Avaj GHAHAVAND 2002.06.22 6.4 24.4 30 

Bam Shahdad 2003.12.26 6.7 19.9 30 

Bam Bam 2003.12.26 6.7 759.6 26.96 

KAHAK Panzdahe khordad 2007.06.18 5.4 41.6 28.38 

KAHAK Naragh 2007.06.18 5.4 20.6 29.9 

 

In the previous work, some researchers use pseudo-velocity response spectrum (PSV) as 

inputs [2,6] and others use pseudo-velocity response acceleration (PSA) [7]. In this research, 

both PSV & PSA used for training ANNs separately, to compare the results and recognizing 

that which of them is more suitable for our purpose. The values of the response spectrums of 

accelerograms calculated at 1000 discrete frequencies according to the following formula 

[23]: 

 

),()()(2)( 2 tatxtxtx gll     (15) 

 

%,5,1000...,,3,2,1,)(max),(   ltxPSV
t

ll  (16) 
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t

llll
 (17) 
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where ωl , ζ and ag(t) are the fundamental frequency and the damping coefficient of the 

single degree of freedom system and the earthquake ground acceleration, respectively. 

 
Table 8: List of training earthquake records, 40 sec duration, Site geology: Soil [31] 

Earthquake Station Date 
Magnitude Modified PGA 

(cm/sec
2
) 

Duration 

(sec) MS 

 KHAF 1979.11.14 6.7 80.95 38.9 

 GONABAD 1979.11.27 7.3 73 39.94 

 KHEZRI 1979.11.27 7.3 95.1 35.02 

 KERMAN 1981.07.28 7 98.2 37.92 

Manjil-Rudbar ESHTEHARD 1990.06.20 7.4 76.5 40 

GARMKHAN BAREZO DAM 1997.02.04 6.8 41.6 35.76 

SAREIN ARDEBIL 1 1997.02.28 6.1 109.1 40 

SAREIN ASTARA 1997.02.28 6.1 42.8 40 

SAREIN 
ARDEBIL(MASKAN

) 
1997.02.28 6.1 160.2 39.3 

GOLBAF KERMAN 2 1998.03.14 6.9 40.1 39.5 

GOLBAF KERMAN 1 1998.03.14 6.9 35.5 37 

 BIRJAND 1998.04.10 5.7 16.6 34.26 

 MESHKINSHAHR 1998.07.09 5.5 22.7 31.98 

 LALEHZAR 1999.03.04 6.4 15.3 33.26 

KAREBAS GUYOM 1999.05.06 6.3 37.2 36.52 

KAREBAS BABAMONIR 1999.05.06 6.3 13.4 39.66 

Changureh-Avaj BOOEIN ZAHRA 2002.06.22 6.4 18.7 40 

Changureh-Avaj ABHAR 2002.06.22 6.4 38.7 40 

Changureh-Avaj ESHTEHARD 2002.06.22 6.4 18.3 31.94 

Bam Joshan 2003.12.26 6.7 24.4 39.66 

Bam Kerman1 2003.12.26 6.7 18.3 38.86 

Bam Mohamad Abad 2003.12.26 6.7 117.9 38.44 

Bam Ravar 2003.12.26 6.7 12 38.38 

Bam Lale Zar 2003.12.26 6.7 12.8 35.36 

Kojur Firoozabad Tonekabon 2004.05.28 6.3 45.9 39.88 

Silakhor Khoram Abad 2006.03.31 6.4 35.3 39.89 

Silakhor Khondab 2006.03.31 6.4 50.9 36.48 

KAHAK Mamooniyeh 2007.06.18 5.4 34.6 40 

KAHAK Veshnaveh 2007.06.18 5.4 38.9 39.94 

KAHAK Raveh 2007.06.18 5.4 21.7 33.94 

 

According to the above calculations, input layers of ANNs will have 1,000 neurons that it 

would make impossible to training and converging ANNs. Therefore, with the usage of PCA 

these values will reduce to a reasonable number by a high precision. 

Wavelet packet coefficients of accelerogram (ag(t)) are embedded in the inner product of 

the signal with every wavelet packet function, denoted by )(kc i

j  and calculated as follow: 

 

),()()( , ttakc k

nj

l

g

i

j   (18) 

 

where )(kc i

j  denotes the ith set of wavelet packet decomposition coefficients at the jth 

scale parameter and k is the translation parameter. 
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The wavelet packet components of accelerogram )(ta i

j  represented by a linear 

combination of wavelet packet functions )(, tk

nj as follows: 

 

).()()( , tkcta k

nj

l

i

j

i

j   (19) 

 

After j level of decomposition, the original signal ag(t) can be reconstructed as [6]: 
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WPCs of accelerograms computed with Shannon-Entropy at appropriate WPT 

decomposition level, j, with db-10 wavelet, although other wavelets would not make any 

significant change in the results. PCA is not reliably reversible. Therefore, we apply it only 

on inputs (PSA or PSV) and outputs (WPCs) will apply to ANNs without any modifications. 

 

6.2. ANN Training and Testing phase 

As mentioned before the main subject of this paper is the using ANNs to mapping a relation 

between response spectrum of training accelerograms that compact with PCA and WPCs of 

them. The training procedure of a neural network has two separate stage: first specifying the 

network‟s architecture that includes the number of hidden layers, the number of nodes in 

each layer and the activation functions of hidden and output layers; second modifying the 

weights and biases of ANNs so the difference between outputs of ANN and targets being 

less than a specified amount. 

In this study, all ANNs have only one hidden layer, also the number of neurons at hidden 

layer determined according to the number of nodes at input and output layers and 

experience. For enabling ANNs to make a nonlinear relation between inputs and outputs the 

activation functions of hidden layers are „tansig‟ and because outputs (WPCs) have a wide 

range values, the activation functions of outputs layers are „purelin‟. 

BP algorithms, that are gradient descent in essence, are the most widely used search 

technique for evolving weights and biases of MLFF. One of characteristics of the gradient 

descent algorithms is rapid convergence on the local optima. Another problem that 

encountered when using BP is that, when the number of neurons of various layers increased, 

the time of evolving ANN increase rapidly. For overcoming these drawbacks, first ACO 

algorithm is used to locating the parameters of ANNs in the near of their optimum value so 

ANNs escape from overfitting and then BP algorithm is used to find the accurate 

parameters. 

 

6.2.1. ACO for neural network optimization 

Many researchers use ACO for optimizing ANNs in many science aspects [24-26]. Figure 2 

gives the flow chart of the algorithm. 
The detail of ACO for ANN optimization is as follows: 

1) Initialization. Create a pheromone table for each parameter (biases and weights) and 
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all values have the same amount of pheromone τ0. 

2) Release ants. Each ant selects a value for each parameter according to their 

pheromone value and probability such as: 
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(21) 

For the first iteration all values selected randomly. 

3) Compute each ant‟s solution cost. When all ants select a matrix for biases and weights 

of ANN, cost for kth ant is compute as follow: 
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where ds,i and 
M

isy ,  are the ith target and actual outputs corresponding to the sth 

training pattern respectively, NM is the number of output units and P is the number of 

training samples. 

4) Check termination criterion. If algorithm reaches to its maximum iteration or the best 

ant‟s solution reach to precision or all the ants converge on one path, set NN 

parameters to the bests that find in algorithm and evolving the network using BP 

algorithm. Else, start next iteration. 
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Figure 2. Basic flowchart of ACO for ANN optimizing 

5) Update pheromone matrix. After computing all ants‟ cost update pheromone matrix 

according to the following formula: 
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6.2.2. Evolving the network using BP algorithm 

Set the best parameters that founded by ACO algorithm as the initial weighs and biases of 

ANNs, and using BP algorithm to finding the exact values. „tansig‟ that used as the transfer 

function of hidden layers is a sigmoid function. These types of functions are called 

“squashing” functions, because they compress an infinite input range into a finite output 

range. Sigmoid functions are characterized by the fact that their slopes should approach 

zero, as the input gets large. This causes a problem when the steepest descent is used to train 

a multilayer network with sigmoid functions, because the gradient can have a very small 

magnitude and, therefore, it may cause small changes in the weights and biases, even when 

the weights and biases are far from their optimal values [27]. 

Therefore, for better and faster training of ANN, we use resilient backpropagation 

(Rprop) algorithm for evolving the ANNs parameters. Rprop performs a direct adaptation of 

the weight step based on local gradient information. This algorithm, apply an individual 

update-value for each weight ( ij ), which solely determines the size of the weight-update. 

This adaptive update-value evolves during the learning process based on its local sight on 

the error function (E), according to the following learning rule: 
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where    10  that increase or decrease the update value. 

Once the updated value for each  parameter is adapted, the parameter updates itself 

according to a very simple rule: if the derivative is positive (increasing error), the parameter 

is decreased by its updated value, if  the derivative is negative, the updated value is added, 

and if the partial derivative changes sign, the previous updating weight is reverted [28]: 
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6.2.3. Testing the ANN 

After completing the training phase and all ANNs reached to desire performance, the trained 

ANNs were tested by presenting the response of accelerograms as input and comparing them 

with the ANNs accelerograms that derived by applying Inverse Wavelet Packet Transform 

(IWPT) to the outputs of networks. These comparisons first performed for the accelerograms 

in the training set, and if ANNs produced the same accelerograms, next a novel 

accelerograms which were not included in the training set is apply to the networks. With 

these actions we can certain that ANNs learned their learning patterns, could generate 

reasonable response to new inputs, and are not overfitting. 

If ANNs do not pass the testing phase, training phase start again with new conditions for 

ACO algorithm. 

 

6.3. Artificial Earthquake Records Generation stage 

If ANNs passed the training phase, they used for generating an artificial earthquake record 

that its response spectrum is closely matched the input spectrum. This is a useful property of 

the neural network based method, which it will enable to generate of accelerograms 

compatible with any defined design spectra. The generated accelerograms can then used in 

time history analysis of linear and nonlinear structures. 

For applying a desire response spectrum to ANNs, first real values of it transform to 

virtual relevant ones by using PCA and then these compact values applied to the ANNs to 

get their response. For generating multiple artificial earthquake records, a Gaussian noise 

applies to the outputs of the hidden and output layers. This method used by the other 

researchers, and allows the ANNs to generate accelerograms with same nature but different 

time history and response spectrum. So the output of neurons at hidden and output layers 

calculated as follow: 
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where Outi, f, Wji.Xi and bi are the output, transfer function, input and bias of ith neuron, 
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respectively and ),0(~ 2 N  (the activation randomness parameter) is a Gaussian 

distributed random noise having zero mean and 2  variance [2]. 

After generating artificial earthquake records by using IWPT to the outputs of ANNs, for 

more spectrum matching, detailed coefficients of artificial accelerograms that obtained by 

using discrete wavelet transform are modified by the Eq. 28 or 29: 
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(30) 

 

where T1j and T2j are boundary values of period range for level j in DWT and ∆t is the time 

step of artificial accelerograms. Moreover, PSA(T)Calc (PSV(T)Calc) is artificial PSA (PSV) at 

period T that is computed from nonaligned artificial accelerogram and PSA(T)Tar (PSV(T)Tar) 

is artificial PSA (PSV) at period T [29,30]. 

The complete flowchart of proposed method illustrated in Figure 3. 

 

 

7. INTERPRETIVE EXAMPLES 
 

187 earthquake accelerograms that recorded in Iran are used for training the ANNs, that all 

of these records were discretized at 0.02 sec. [31]. Therefore, all accelerograms with 

durations of 10, 20, 30, and 40 sec. have 501, 1001, 1501, and 2001 discrete points, 

respectively. Tables 2 to 8 show the list of training records in each soil condition and 

duration group.  
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Figure 3. Complete flowchart of proposed method 

 

PSA or PSV spectra of all accelerograms are calculated numerically, according to 

Equations 15 to 17 at 1000 equally spaced discrete period in the range of 0.01-10s, with 5% 

damping ratio (ζ=5%). For reducing the dimension size of PSA (PSV), different effective 

variance ratios is selected as %999.0var effR , so the number of neurons in input layers of 

ANNs are according to Table 9. 

As mentioned before, the output layer of neural networks has the wavelet packet 

coefficients at level j of the wavelet packet transform of the earthquake accelerograms. 

Appropriate decomposition levels selected according to different parameters such as the 

accelerogram‟s duration, total WP packs coefficient numbers, desired precision in spectrum 

compatibility and the reasonable computational time in training ANNs. Therefore, the 

number of nodes at output layers of the ANNs, and the number ANNs that should trained, 

are determined after decomposition of accelerogram, and are according to Table 10. 
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Table 9: Number of Neurons in ANNs‟ input layers 

Duration Group No. of Input Neurons 

Soil Condition: Rock 

10 27 

20 31 

30 34 

40 25 

Soil Condition: Soil 

20 35 

30 35 

40 35 

 
Table 10: Number of packs and WP coefficients in each duration group 

Duration 

Groups 

Selected Levels of 

Decomposition in WPT 

Number of Packs 

(No. of ANNs) 

Number of Coefficients in each Pack 

(No. nodes in Output layer) 

10 sec. 5 32 34 

20 sec. 6 64 34 

30 sec. 7 128 30 

40 sec. 7 128 34 

 

Other parameters of neural networks architecture are transfer functions of layers and the 

number of neurons in hidden layers. Criterion of the selection of transfer functions discussed 

at section 6.2. The number of neurons at hidden layer varied from 35 to 43 according to the 

number of neurons at input and output layer and experience. 

ACO as a metaheuristic algorithm has the advantage of global optimization and easy 

realization. Optimum state of using ACO derived only by selecting appropriate value for 

algorithm parameters. The important parameters that should define for algorithm are 

evaporation rate, number of explorer ants and initial pheromone value. The evaporation rate 

(ρ) enables the ants to forget the old solution and explore the new path. Usually ρ sets as to 

0.8-0.95, so we choose 0.9 in all algorithms. 

A large number of ants (N) can endow algorithm with powerful ability of exploring more 

candidate solutions in an iteration, but it is at the expense of more CPU time in the case of 

nonparallel realization. A small N is not good for exploring new paths, especially in the later 

phase of ACO algorithm [32]. In this study, we use 40-60 ants according to our desire 

precision. 

If initial pheromone value (τ0) is selected too low, then the search is quickly biased by the 

first solutions generated by the ants, on the other side, if τ0 is too high, then many iterations 

are lost waiting until pheromone evaporation reduces enough pheromone values, so that 

pheromone added by ants can start to bias the search. For our purpose, we find the best value 

for τ0 according 

to trial and error procedures and TSP references. 

By completion the training phase of ANNs, the trained neural networks tested with the 

records from the training group. Figures 4 and 5 show a test of the trained neural networks 

for 10 and 40 seconds duration in Rock training set and figure 6 shows another one for 30 

seconds duration in Soil training set, respectively. The left side of each figure shows the 

result of ANNs that trained by PSV and the right shows the response of PSA‟s ANNs. 
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Figure 4. A test of ANNs from the Rock training group with 10 sec. duration (Shalamzar Sta., 1984) 

 

 
Figure 5. A test of ANNs from the Rock training group with 40 sec. duration (Torbat-hydariyeh 

Station, 1979) 
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Figure 6. A test of ANNs from the Soil training group with 30 sec. duration (Shahdad Sta., 2003) 

 

With comparison of the actual and generated accelerograms, and their response 

spectrums we can certain that the trained ANNs have learnt the training cases very well. 

Also the responses of ANNs that trained by PSA is completely alike that derived by PSV‟s 

ANNs. 

After make sure that ANNs learnt their training path, they tested by accelerograms that 

are not participated in their training set. For having a numerical criterion for comparison the 

results of ANNs with truth and other work, we represent the difference between actual and 

simulated response spectra by use of root mean square error (RMSE). Figures 7 and 8 show 

a test of the trained neural networks for new records in Rock 20 and 30 seconds duration and 

figures 9 and 10 show the results of Soil 20 and 40 seconds, respectively. Note that, the 

RMSE that written below the each figure is the average of ANNs that trained by PSA or 

PSV. By comparing the response spectra of actual and simulated accelerograms, and the 

value of RMSE we could conclude that ANNs were able to generate appropriate outputs to 

the inputs that were not in their training sets. 

After testing phase, the major purpose of this paper that is generation of multi artificial 

earthquake records that their spectrum matched a flat design spectrum can derive. The 

generated accelerograms are artificial accelerograms with similar characteristics as those in 

the training set and their response spectra are very close to the input design spectrum. A 

number of design spectra presented as novel cases to the trained ANNs. For example figures 

11 and 12 show the generated varied duration accelerograms from Newmark and Hall [33] 

with PGA 1g and mean hazard level for Rock and Soil geology. As shown in training and 

testing figures the response of  
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Figure 7. A test of ANNs by a new accelerogram in Rock group with 20 sec. duration (Zarrat 

Sta., 1994) (RMSE = 0.1732) 

 

 
Figure 8. A test of ANNs by a new accelerogram in Rock group with 30 sec. duration (Selseleh 

Sta., 1998) (RMSE = 0.1016) 
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Figure 9. A test of ANNs by a new accelerogram in Soil group with 20 sec. duration (B-

Torkaman Sta., 1999) (RMSE= 0.1269) 

 

 
Figure 10. A test of ANNs by a new accelerogram in Soil group with 40 sec. duration 

(Gomeshan Sta., 1999) (RMSE= 0.1117) 
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ANNs that trained by PSA or PSV are completely similar, therefore the artificial time 

histories that derived from PSA‟s ANNs is just displayed. 

Comparison between the target spectrum and the PSAs of artificial accelerograms shows 

that proposed method is capable of producing different but reasonable and realistic 

earthquake accelerograms from a desire design spectrum. 
 

 
Figure 11. Generated earthquake accelerograms from the design response spectrum (mean-

1.0g-Rock) 
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Figure 12. Generated earthquake accelerograms from the design response spectrum (mean-

1.0g-Soil) (Average of RMSE= 0.1639) 

 

 

8. CONCLUDING REMARKS 
 

In this paper, hybrid artificial neural networks based on ACO-Rprop used for generating 

multiple spectrum-compatible artificial earthquake records for specified site geology. By 

using the learning capability of ANNs, an inverse mapping from response spectrum to 

wavelet packet coefficients at level j of the wavelet packet transform of the earthquake 

accelerograms is developed. Learning accelerograms categorized into Rock and Soil group 
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according to the shear velocity under their recorder stations. In addition, for having artificial 

records with varied durations and better resolution by using WPT, training sets categorized 

according to the bracket duration of accelerograms. So the proposed method is applied to a 

sample of 186 Iran recorded earthquakes categorized into two site geology and four duration 

groups 10, 20, 30, and 40 seconds. For overcoming the drawbacks of traditional ANN‟s 

learning algorithms and faster training, a hybrid algorithm base on ant colony optimization 

and Resilient backpropagation algorithm (Rprop) is presented, also by using the PCA for 

decreasing the number of nodes at input layers, maximum time that spends for training one 

ANN is eliminated to 150 seconds. 

 

After completing the training phase of ANNs, they tested with accelerograms from the 

training sets and accelerograms that were not included in training set. If the inputs to ANNs 

are included in training sets, they should generate an accelerogram completely similar to 

input. However, when PSA or PSV of accelerogram, which were not included in the training 

set, used as Input, the neural networks may perform in two different ways. First, the neural 

network picks an accelerogram similar to one from its training set, if its response spectrum is 

close to the input response spectrum. Second, in case there are no earthquake records in the 

neural network‟s training set which have a response spectrum close to the input response 

spectrum, the trained neural network synthesizes a reasonable looking accelerogram from its 

training set. 

 

After be certained that ANNs learned their learning path and could generate reasonable 

response to new inputs, artificial earthquake records derived by applying a desire design 

spectrum to ANNs‟ input layers and a Gaussian noise to hidden and output layers. As shown 

in the previous pictures, the response spectra of the generated accelerograms are closed to 

the design spectrum (average RMSE = 0.1594) and they have time domain characteristics as 

earthquake accelerograms. 
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